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Classification Methods  

 

•  Interferogram observables:  
-  Power (σ0), phase (height), coherence 

•  Power most sensitive to surface type 
-  Water is bright, land is dark 

•  Multiple approaches have been considered 
-  Pixel-wise Bayes classification with continuous 

fractional water estimation 
-  Contextual classification (Markov Random Fields) 
-  Region-based classification 
-  Narrow river detection 
-  Fusion of classifiers 
-  Various noise versus resolution trades 

•  Next steps 
-  Incorporate prior water masks and/or multi-temporal 

SWOT data 
-  Further explore using coherence and height flatness 

(looping back after geolocation) 

Simulated SAR image Hierarchical segmentation Extracted region boundaries before and after position refinement 

Fused water mask 

… 

… 

Classification results 
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Classification Performance 

•  Pixel-wise Bayes detection 
-  Spatial structure imposed after detection with a 

‘clean-up’ filter 
-  Analyzed using SWOT Hydrology Simulator for 

♦  (250m)^2 lakes and 100m rivers (requirement) 
♦  (100m)^2 lakes and 50m rivers (goal) 
♦  Flat earth, no layover 
♦  Simple lake shape and snake river (with no slope) 
♦  Multiple coherence-time smearing (az. ptr) 
♦  Multiple water σ0 (SNR) 

-  Meets requirements under nominal assumptions 
♦  Higher errors in low water sigma0, higher coherence 

time smearing, and lower SNR parts of swath (near 
and far range) 

 

Errors Vs. Cross-track 

(250m)^2 lake, 10dB water σ0,  
presum 2.0, 25m az ptr, 4looks 
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Water Detection Problems and  
Science Team Interaction 

•  Developing more complex methods to be more robust to 
phenomenological uncertainties and measurement artifacts 
-  Dark Water: specular reflection over water due to decreased surface stress 

causes bright return at nadir, but dark at SWOT incidence angles 
-  Vegetation: attenuates ground signal, may dampen surface stress (more 

specular water under vegetation) 
-  Layover: modulates power, phase and coherence—limiting science utility of 

the data 
•  Many of these approaches involve prior information or the use of 

multi-temporal data 
-  Science Team can provide important feedback on legitimacy/limitations of 

proposed priors and multi-temporal time scales  

 

surface wind: ~3-4 m/s (left), ~5-7 m/s (right) 

Pahoa  
Island 

Pahoa 
 Island 

Layover figure from SWOT Mission Science Document 
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Water Detection Uses for Priors 

•  Two places where water detection can benefit from priors/multi-
temporal data 

•  For data pruning 
-  Make sure we keep in the pixel cloud all data that are likely to be water 

(whether detected as water nor not) 
♦  Maximal floodplain extent maps 

-  Lake and river databases may be useful here 
-  Need to develop a conservative mask for wetlands! 

•  To improve the robustness of water detection 
-  Improve performance in presence of dark water, bright land (layover, man-

made structures, etc), vegetation, rain, ice, etc… 
-  Beginning to explore the use of water probability maps or flood-pain DEMs 

that may be more useful here than lake/river databases 
-  Other types of priors that may be useful to consider 

♦  Vegetation type maps 
♦  Vegetation gap fraction maps 
♦  Ice/snow maps (frozen probability maps) 
♦  σ0 maps (seasonally varying?) 
♦  Low wind speed masks (prior probability of dark water) 
♦  Maps of industrialized areas, roads, railways 
♦  DEMs (e.g., for defining water exclusion zones)  
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Priors for Water Detection 

•  Water mask priors for water 
detection 
-  Need to accurately represent 

complex shapes of water bodies 
(e.g., braided rivers) 

-  Need to change with water height 
-  May need to be updated regularly 

to handle dynamic changes in 
floodplain 

-  These characteristics not captured 
by static prior river/lake databases 
nor by static binary water masks 

•  Potential candidates: 
-  Use previous SWOT passes 
-  Water probability maps 

♦  Global water probability map based 
on 30 years of Landsat data by J.-F. 
Pekel et. al. * 

-  Floodplain DEM 
-  Use other sensor data (LandSAT, 

Sentinel, NISAR, etc) 

•  Floodplain DEM and probability 
maps are interrelated 
-  For static bathymetry 
-  Thresholding the probability maps 

gives a unique water mask for  
♦ A given water height (for flat non-

flowing systems) 
♦ A given stage for rivers 

Cross section view 

90% 
80% 
50% 

10% 
40% 

Water height probability: 

Inundation probability: 
	   10% 

90% 

40% 
50% 
80% 

Plane view 

Graphic Courtesy of Claire Michailovsky 

* 30 Years’ Global Scale Mapping of surface Water Dynamics at 30 m resolution, J.-F. Pekel et. al.  http://due.esrin.esa.int/mwbs2015/files/1_Pekel_200dpi.pdf 
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Combining and Updating Priors 

 
•  Multiple priors can be combined 

-  Convex combinations of prior PDFs 
-  Fusion/voting of classification using different priors 

•  Floodplain DEM and/or probability maps can be updated 
using SWOT data on a regular basis 
-  Inline as part of the algorithm flow for each pass or cycle 
-  Offline on other time scales season, year? 

•  Need to analyze the trade space to find the best solution that 
is both practically implementable and effective 
-  Science Team input on appropriate time scales needed 

Prior-based 
Classification 

SWOT Interferogram 

Water Mask 

FPDEM 

Prob. Maps 

Last N 
Passes 

External 
Datasets 

Prior-based 
Classification 

SWOT Interferogram 

Water Mask 

Update Prior 
Prob. Maps 
and FPDEM 

for next 
pass/cycle 

Load in Static Priors and 
Previous Data each Pass 

Dynamically Update Priors for 
Each Pass/cycle 

vs. 
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Interaction between Water Detection  
ADT group and Science Team 

•  ADT to provide to ST: 
-  Propose and implement water detection and flagging algorithms 

and provide performance assessments 
-  Provide appropriate documents for review (ATBDs, product 

description documents, etc…) 

•  ST to provide to ADT:  
-  Feedback on legitimacy of using proposed priors (and multi-

temporal data and time scales) 
-  Expert advice on existing datasets/priors, with limitations, global 

availability etc 
-  Aid in the development of a global wetland maximum extent map 
-  Assess the science impact (inform non-official science 

“desirements” that are not captured by the formal requirements in 
the SRD)  
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Backup 
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Area % Error, Swath Average 
68% threshold indicates 1 sigma error, means 68 % of the 
data has absolute area % error less than this threshold 

•  Bias is a function of SNR/contrast and coherence time 
•  Methods to improve bias may improve area estimates 
•  Meet requirements for  

-  Coherence times <= 50m (magnitude) smearing 
-  Water sigma0 >=7dB (10dB without coherent gain) 

•  Resolution preserving pre-smoothing or contextual 
approaches may improve classification in low SNR swath 
edges 
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•  Height biases due to misclassification are not directly handled (flat scene for 
both land and water) 
-  Edge pixels can be flagged and discarded to address land misclassified pixels corrupting 

the heights, with the cost of having fewer pixels to average increasing the random error  
•  Height errors meet requirements for nominal water brightness irrespective of 

coherence time smearing 
-  Small lakes with low SNR (and more missed detections) may not enable enough 

averaging to beat down height variability, likely to improve with better classification 
•  Rivers more sensitive to coherence time since they contain more edge pixels 
•  River reaches are ~2km for this case (485m)^2 

Height Error, Swath Average 
68% threshold indicates 1 sigma error, means 68 % of the 
data has absolute height error less than this threshold 


